Advanced High Temperature Structural Honeycomb TPS, Phase I

Completed Technology Project (2012 - 2012)

Project Introduction

In this NASA Phase I SBIR program, MATECH proposes to leverage successfully developed laboratory and pilot scale manufacturing technologies to produce low cost Silicon Oxycarbide (SiOC) fibrous-walled high temperature honeycomb structures, hat stiffeners, and rigid fibrous insulators. A highly scale-able melt blowing fiber manufacturing system was previously developed to produce non-woven mat from preceramic polymer and then formed into a pleated shape using a pleating apparatus. MATECH has shown that the SiOC fibrous ceramic used to make the core retains its mechanical and thermal stability to temperatures up to 1400°C. These robust structural airframe materials can be densified with SiOC and ZrOC (for ultra-high temperature) matrix materials to produce a suite of advanced heat shield components. This suite innovative airframe material systems and fabrication methodology offers robust innovative multifunctional structural high temperature thermal protection systems for demanding high-mass planetary entry, descent, and landing (EDL) applications. The active support and participation of Pratt & Whitney Rocketdyne and Boeing bodes well for a successful Phase I effort and follow-on Phase II program. More significantly, the close collaboration with these major industrial stakeholders enhances the likelihood of a successful Phase III transition into commercialization.

Primary U.S. Work Locations and Key Partners

Advanced High Temperature Structural Honeycomb TPS, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Advanced High Temperature Structural Honeycomb TPS, Phase I

Completed Technology Project (2012 - 2012)

Organizations Performing Work	Role	Туре	Location
MATECH Advanced Materials	Lead Organization	Industry	Westlake Village, California
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations

California

Project Transitions

February 2012: Project Start

August 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137961)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

MATECH Advanced Materials

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Thomas Rosengren

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Advanced High Temperature Structural Honeycomb TPS, Phase I

Completed Technology Project (2012 - 2012)

Technology Areas

Primary:

- TX09 Entry, Descent, and Landing
 - ☐ TX09.1 Aeroassist and Atmospheric Entry
 - ☐ TX09.1.1 Thermal Protection Systems

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

